Root refinement for real polynomials using quadratic interval refinement

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Root refinement for real polynomials using quadratic interval refinement

We consider the problem of approximating all real roots of a square-free polynomial f with real coefficients. Given isolating intervals for the real roots and an arbitrary positive integer L, the task is to approximate each root to L bits after the binary point. Abbott has proposed the quadratic interval refinement method (QIR for short), which is a variant of Regula Falsi combining the secant ...

متن کامل

Root Refinement for Real Polynomials

We consider the problem of approximating all real roots of a square-free polynomial f . Given isolating intervals, our algorithm refines each of them to a width of 2−L or less, that is, each of the roots is approximated to L bits after the binary point. Our method provides a certified answer for arbitrary real polynomials, only considering finite approximations of the polynomial coefficients an...

متن کامل

Real Roots of Quadratic Interval Polynomials

The aim of this paper is to study the roots of interval polynomials. The characterization of such roots is given and an algorithm is developed for computing the interval roots of quadratic polynomials with interval coefficients. Mathematics Subject Classification: 65G40

متن کامل

Consistency and refinement for Interval Markov Chains

Interval Markov Chains (IMC), or Markov Chains with probability intervals in the transition matrix, are the base of a classic specification theory for probabilistic systems (Larsen and J onsson, 1991). The standard semantics of IMCs assigns to a specification the set of all Markov Chains that satisfy its interval constraints. The theory then provides operators for deciding emptiness of conjunct...

متن کامل

An Interval Refinement Technique for Surface Intersection

This paper describes a technique for computing the intersections of two parametric surfaces based on interval arithmetic. The algorithm, which can be stopped and restarted at any point, uses search techniques to refine its description of the intersections progressively. Interval arithmetic provides guaranteed points on the intersection curves to within a user-specified tolerance. These points a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2015

ISSN: 0377-0427

DOI: 10.1016/j.cam.2014.11.031